forecasting iranian inflation rates using .st ructura l, time series, and artificial neural networks models

Authors

دکتر سعید مشیری

abstract

in this paper, i develop three forecasting models: namely structural, times series, and artificial neural networks; to forecast iranian inflation rates. the structural model uses aggregate demand and aggregate supply approach, the time series model is based on the standard arlma technique, and the artificial neural network applies multi-layer back propagation model the latter, which is rooted in physic, cognitive, and computer sciences, mimics human brain to learn any complex pattern and to forecast their future behavior-the results of the forecasting competition show that the back propagation model is able to generate inflation• forecasts much better than the traditional competitors

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

comparative study of estimation power of artificial neural networks and autoregressive time series models in inflation forecasting

this article is a comparative study of estimation power of artificial neural networks and autoregressive time series models in inflation forecasting. using 37 years iran’s inflation data, neural networks performs better on average for short horizons than autoregressive models. this study shows usefulness of early stopping technique in learning stage of neural networks for estimating time series...

full text

Modeling and Forecasting Iranian Inflation with Time Varying BVAR Models

This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...

full text

Forecasting Exchange Rates using Artificial Neural Networks

In the dynamic global economy, the accuracy in forecasting the foreign currency exchange rates is of crucial importance for any future investment. The use of computational intelligence based techniques for forecasting has been proved extremely successful in recent times. The aim of this study is to identify a neural network model which has ability to predict the US Dollar against Sri Lankan Rup...

full text

Financial Time Series Forecasting Using Artificial Neural Networks

Financial and capital markets (especially stock markets) are considered high return investment fields, which in the same time are dominated by uncertainty and volatility. Stock market prediction tries to reduce this uncertainty and consequently the risk. As stock markets are influenced by many economical, political and even psychological factors, it is very difficult to forecast the movement of...

full text

Forecasting Hydrologic Time Series Using Artificial Neural Networks

Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently Artificial Neural Networks (ANN) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANN to forecast ...

full text

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

full text

My Resources

Save resource for easier access later


Journal title:
تحقیقات اقتصادی

جلد ۳۶، شماره ۱، صفحات ۰-۰

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023